Biomechanical stress-induced apoptosis in vein grafts involves p38 mitogen-activated protein kinases.
نویسندگان
چکیده
The present study was designed to investigate whether apoptosis occurs in early-stage vein grafts and to determine the mechanisms by which mechanical stress contributes to apoptosis in vascular smooth muscle cells (SMCs). Apoptosis in vessel walls of mouse vein grafts was confirmed by morphological changes and by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL). TUNEL(+) cells in vein grafts 1, 4, and 8 wk postoperatively was 13%, 29%, and 21%, respectively, and apoptosis occurred mainly in veins grafted to arteries, remaining unchanged in vein-to-vein grafts. When mouse, rat, and human arterial SMCs were cultured on a flexible membrane and subjected to cyclic strain stress, apoptosis was observed in a time- and strength-dependent manner. All three types of SMCs showed apoptotic death as confirmed by TUNEL, propidium iodide, and annexin V staining. To further study the signal pathways leading to apoptosis, activities of p38, a subfamily of mitogen-activated protein kinases (MAPKs), were determined. Mechanical stress resulted in p38 MAPK activation, reaching high levels within 8 min. SB 202190, a specific inhibitor for p38 MAPKs, prevented SMC apoptosis in response to mechanical stress. SMC lines stably transfected with a dominant negative rac, an upstream signal transducer, or overexpressing MAPK phosphatase-1, a negative regulator for MAPKs, completely inhibited mechanical stress stimulated p38 activation and abolished mechanical stress-induced apoptosis. Thus, we provide solid evidence that one of the earliest events in venous bypass grafts is apoptosis, in which mechanical stress-induced p38-MAPK activation is responsible for transducing signals leading to apoptosis.-Mayr, M., Li, C., Zou, Y., Huemer, U., Hu, Y., Xu, Q. Biomechanical stress-induced apoptosis in vein grafts involves p38 mitogen-activated protein kinases.
منابع مشابه
Modulation of H2O2- Induced Neurite Outgrowth Impairment and Apoptosis in PC12 Cells by a 1,2,4-Triazine Derivative
Introduction: Increased oxidative stress is widely accepted to be a factor in the development and progression of Alzheimer’s disease. Triazine derivatives possess a wide range of pharmacological activities including anti-oxidative and anti-in.ammatory actions. In this study, we aimed to investigate the possible protective effect of 3-thioethyl-5,6-dimethoxyphenyl-1,2,4-triazine (TEDMT) on H2O2-...
متن کاملIranian crack induces hepatic injury through mitogen-activated protein kinase pathway in the liver of Wistar rat
Objective(s): Iranian crack (IC) is a heroin-based substance manifesting various pathologic side effects. Herein, we aimed to investigate the mechanism of IC-induced liver injuries in Wistar rats. Materials and Methods: Twenty male Wistar rats were randomly divided into two groups: control, and IC (0.9 mg/kg/day/IP, for 30 days). Mitochondrial reactive oxygen species (ROS) production was measur...
متن کاملApoptosis induced by pneumolysin in human endothelial cells involves mitogen-activated protein kinase phosphorylation.
Pneumolysin (Ply) is an essential virulence factor of S. pneumoniae, which can induce apoptosis in a variety of host cells to facilitate infection of pathogenic bacteria by as yet unclear mechanisms. To confirm the apoptosis-inducing properties of pneumolysin in endothelial cells, human umbilical vein endothelial cells (HUVECs) were exposed to pne...
متن کاملPropofol attenuates hydrogenperoxide-induced apoptosis in human umbilical vein endothelial cells via multiple signaling pathways
BACKGROUND Propofol has been reported to protect vascular endothelial cells against oxidative stress. In this study we investigated its effect on hydrogen peroxide (H2O2)-induced apoptosis of human umbilical vein endothelial cells (HUVECs) and examined the possible signaling pathways. METHODS HUVECs were pretreated with propofol (1, 5, 25, and 50 µM) for 30 min and then co-incubated with 0.4 ...
متن کاملTransforming Growth Factor- 1 (TGF- )–induced Apoptosis of Prostate Cancer Cells Involves Smad7- dependent Activation of p38 by TGF- -activated Kinase 1 and Mitogen-activated Protein Kinase Kinase 3
The inhibitory Smad7, a direct target gene for transforming growth factor(TGF), mediates TGF1–induced apoptosis in several cell types. Herein, we report that apoptosis of human prostate cancer PC-3U cells induced by TGF1 or Smad7 overexpression is caused by a specific activation of the p38 mitogen-activated protein kinase pathway in a TGF–activated kinase 1 (TAK1)and mitogen-activated protein k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 14 2 شماره
صفحات -
تاریخ انتشار 2000